ADULT AND LARVAL STAGES OF PARAUSTROSTRONGYLUS RATTI (NEMATODA: TRICHOSTRONGYLOIDEA) FROM RATTUS FUSCIPES

by LaN Beveridge* \& Marie-Claude Durette-Desset \ddagger

Abstract

Summary Bevermge, 1, \& Durevte-Desset; M,-C, (1993) Adult and larval stager of Foraustrostrongylus ratri (Nematoda: Trichostrongyloidea) from Ratus fuscipes, Thans. R, Soc. S. Alust. $117(1), 27-364$ June, 1993. The morphology of the adult and the third and fourth larval stages of Paraustrostrongyius rati from the native rodent Raztus fiscipes is described, with particular refcrence to the synlophe, as well as the mechanism of athectuaent of the nematode to intestinal villi. The synlophe of the fourdif larval stage has an ubfique axis of orientation. in oontrast to the frontal orientation in the adult stage, and most closely resembles the synlophe of species of Dessetostrongylus parasitic in dasyunil marsupiats. Ontogenctic data therefore suggest that furcusitrongylus evolved from an ancestor resembling Desseiontrongylus.

Key Words: Nematodes, Trichostrongyloidca, Paraustrostrongy/us, ontogenesis, larvae, morphology, rodents.

Introduction

The trichostrongyloid nematode subfamily Herpetostrongylinae occurs in the small intestines of Austalian marsupials and is wne of the few trichostrongylold groups in which there is apparently a close evolutionary parallel between horts and parasites (Durette-Desset 1982, 1985; Humphery-Smuth 1983; Beveridge 1986). Three distinct lineages bave been recognised among the eight oomponent genera in marsupials, each sharing a probable common ancestry with Woolleya, a contemporary genus which occurs in dasyurid marsupials. Woolleya shares fearures in common with the genus Viamaia, belonging to the family Viannaidae, which is present in South American marsupials and rodents (Humphery-Smith 1983)

Two of the berpetostrongyline genera, Ausrostrangylus and Paralustrostrongylus, occurring in diprotodont marsupials, with one species in the marsupial mole, Nororycres typhlops, and one in a rodent, Ratrus firecipes, ive of particular morphological interest due to the development of paired lateral cuticular inflations, unique within the Trichostrongytoidea, termed "floats" by Durette-Desset (1979). The evolutionary developinent of these floats was investigated in Austrostrongyluts and in a related genus, Sutanostrongylus, (Beveridge \& Durette-Desset 1986) and species with intermediate or primitive morphological features, that is either with a single fioat or without floats, were identified. Thix study suggested that Sutarostrongylus, parasitic in Thylogale spp., exhibited a number of primitive characters, ancestral to those seen in Ausinosirongyiks, but provided no

[^0]additional jnsights into the possible relationships between a postulated Woalleya-like ancestor and Suranostrongylus. Dessetosirongylus is one possible intermediary between Foollega and Sutarostrongylus (see Beveridge \& Durette-Desset 1986) as it has a syniophe, or complement of body ridges, identical with that of Siaarosirongylus except for the fact that the axis of orientation of the synlophe is oblique in Dessetostrangylus but frontal in Sutarastrongylus, Humphery-Snith (1983) by contrast, placed greater emphasis on the frontal urientation of the syniophe of Austrostrongylus and derived it directly from an ancestral stste resembling that found in Woolleya sprenti.

Cassone et al. (1986), studying new species of Woolleya and Parricialina from dasyurid marsupials confirmed the direct Holleya - Austrastrongylus relationship identified by Humphery-Smith (1983), but considered that Dessetostrongylus was a sister group to Austrostrongyins.

All studies on the evolution of the Herpetostrongylinae to date have relied on the comparative morphology of the adult nematodes and particularly on differences in the anatomy and orientation of the synlophe. The ontogenesis of larval stages is an important source of phylogenetic information in the Trichostrongyloidea (Durette-Desset 1985), but has not been exploited in the case of the Herpetostrongylinae other than in the case of Beveridgiella pearsoni (see Humphrey-Smith 1980), because no life cycles are known.

We decided to investigate the morphology of the various life-cycle stages of Paraustrostrongylus ranti, the anly member of the genus to occur in a eutherian mammal (Obeadorf 1979) to attempt to obsaif additional information on the evolution of the synlopheof the geaus. Due to its abuadance in Rathus fiscopes and the ease with which infected rats could be obtained and kept in the laboratory, P, rutfi was considereal to

Figs 1-15. Paraustrostrangylus ratti Obendorf: Alult. 1, anterior end, lateral view, dorsal aspect on left hand side; 2, anterior end, dorsal view; 3 , apical view of mouth opening and lips; 4 optical transverse section through hexagonal buccal capsule, with dorsal tooth; 5 , transyerse optical section through anterior end of oesophagus; 6 , anterior region, left lateral view; arrows indicate origins of ridges; 7 , anterior region, right lateral view; arrows indicate origins of ridges; 8 , bursa, lateral view; numerals indicate ray numbers according to Durette-Desset (1983); 9 , bursa, ventral view; 10, gubernaculum, lateral view; 11, spicule tips, ventral view; 12, spicule tip, lateral view; 13, genital cone, ventral view of papilla 0;14, genital cone, lateral view showing papilae 0 and $7 ; 15$, fernale tail, lateral view. Scale lines $0.01 \mathrm{~mm} ;$ figs $1,2,10,11-14$ to same scale; figs $3-5$ to same scale; figs 6,7 to same scale; figs 8,9 to same scale. Legend: a, amphid; deirid; e, excretory pore; l, lip; p, posterior atrophic uterus; s, submedian papilla; sp, sphincter; \mathbf{t}, dorsal tooth; ve, vestibule.
be more suitable for investigation than species. occurring in marsupials. The morphological data presemted here also previde the basis for subsequent ultrastructral studies.

Methods

Naturally infected rats, Radtus fuscipes (Wateribuse), were rrapped at Blackwood, Victoria ($37^{\circ} 29^{\prime} \mathrm{S}$, $144^{\circ} 99^{\prime}$ E), killed in the laboratory and the small intestine was divided into segments and opened in warm 0.09% saline. The imestinal segments were placed in an incubator for two hours to allow nensatodes to migrate into the saline. Nematodes were then washed in saline and fixed in hot 70% ethanel, Small numbers of nematodes were fixed in 2.5% glutaraldelyye in phosphate buffer at $4^{\circ} \mathrm{C}$.

Adult, fourth and parasitic third-stage nematcoles were cleared in Jactophenol and examined, using Nomarski interfereace contrast microscopy. Transverse sections of the tody of male and female nematodes were cut using a cataract scalpel, mounted in tactophemol for exammatuon and oriented using the methods of Durette-Desser (1971). Apical views of the anlerior extremity were made by similar means. Specimens fixed in glutaraldehyde were embedded in resin, Sections cul at a thickness of $1 \mu \mathrm{~m}$ were stained with waluidine blue and were used to confirm momhological teatures seen in hand-cut section, Additional specimens were dehydrated in a graded ethanol series, dried in a critical point drier, coated with gold and examined with a Siemens Autoscan scanning electron microscope.
Ridges of the synlophe were numbered in an anticlockwise fashion beginning with the lefi-ventral ridge, in order to demorstrate homologies between stages. The numbering system for the bursal tays and papillae follows that of Durette-Desse: (1985).
Faeces from naturally infected ras were collected. mixed with an equal quantity of charcoal and cultured on moist filtes paper in Petri dishes at laboratory temperature. Five and eight days later, larvae emerging from the faecal-charcoal mixure were collected in distilled water and concentrated by sedimentation.
Thind-stage larvac were examined live in water as well as after having been immobilised by heating. Some larvac were killed in hot 70% ethanol and cleared in glycerol by transferring to a mixture of 70% ethanol and glyberol and allowing the ethanol to evaporate.
Measurements were made elther with an oculas micmometer or from drawings made using a drawing tube and are presented in the lext in millinetres as the range fallowed by the mean in parentheses.

Morphological terminology for the synlophe follows that or Duterti--Desset (1985). All drawings are oriented with the dorsal aspect uppermost and the left hand side
of the nematode body towands the left margin of the page,
Parasitic third-stage larvae of P rutti were distinguished from the synhospitalic nematodes Nippustrongylus magntus and Oailia bainese by leatures of the tail and cephalic extremity, based on material obtained from monospecific experimental infections wah each of these two species. To obtain a monospecific infection of adult P. ratri, one naturally infected R. fuscipes was killed, all P. ratti in the small intestine were sorted while being maintained in warm saline, and were teansferred by enterotomy to a laboratory-reared R, fuscipes under general anaesthesis. Four weeks later, the recipient rat was killed, the intestine removed and 10% buffered formal saline injected rapidly into it to fix nematodes in situ. Fragments of intestine with worms attached subsequently were dissectod and prepared for scanning electron microscopy as described above, Additional segments were dehydrated: embedded in paraffin, serially sectioned at a thickness of $10 \mu \mathrm{~m}$, and the sections stained with haematoxylin and eosin for histological examinations.

Results

Adult male and fenale nematodes, fourth-stage larvae and two parasitic third-stage larvae were eximined morphologically under the light macroscope, as well as thind-stage laryae cultured from faeces. Light microseopic observations were comparod with scanning electron micrographs of the adults.

Paraustrostrongylus radi Obendorf, 1979 FIGS 1.38

Description: Adult: small nematodes, ted when live, spirally coiled in $3-5$ tight coils, ventral surface innermost, capable of uncoiling and becoming straight when maintained in warm isotonic solutions. Cephalic extremity with prominent cephalic vesicle, 20-30 fine transverse ridges on vesicle (Fig: 1). Mouth opening. surrounded by four sub-mediam papillac and two amphids; no tabial papillae visible; six rounded lips project into mouth opening. Buccal capsule prominently developed, heavily scletotised, circular to sub-hexagonal in transverse section (Fig , 4), walls, arched inwards, increase in thickness towards base, lumen increases in diameter towards base; prominent tooth projects inwards from dorsal lobe of oesophagus: sub-ventral teeth absemt. Oesophagus elongate, slender, clavate, widened at anterior extremity; excretory pore variable in position, usually anterior, occasionally posteriur, to oesophago-intestinal junction; deirid tiny, dormed, at level of excretory pore; nerve ring in midcesophageal region, visible in few specimens only.

Figs 16-23. Paraustrostrongylus ratti Obendorf: adult. 16-22, transverse sections of body, $16-19$, male, 2.3 mm long; 16 , at posterior end of cephalic vesicle, 0.06 from anterior extremity; 17 , in oesophageal region, 0.30 mm from anterior extremity; 18, in posterior half of body, 1.60 mm from anterior extremity; 19 in cloacal region, 0.10 mm from posterior extremity; $20-22$, female, 2.6 mm long; 20 , oesophageal region; $21,0.50$ from anterior extremity; $22,1.90 \mathrm{~mm}$ from anterior extremity; 23, posterior end of male, ventral view, showing termination of ventral ridges (arrows) and termination of floats (f). Legend: d, dorsal; 1 , left; r, right; v, ventral; ridges are numbered (1-7) in an anticlockwise direction from the left ventral ridge. Scale line: 0.01 mm .

Body covcred with numerons fine transverse annulgtions (Fig. 36): two lateral, tluid-filled zavities ($=$ floats) present on eithes side of body, externd from innediately posterior to vesicle ta posterior region of nematode Synlophe composet of three ventral ridges (1-3) (Fig. 36), oriented from right to left, dimmishing in size from left to right; right floal with pwo dorsal (56) (Fig, 35) und single ventral (4) ridge directed towards left dotsal: 5 idges $1-3$ cornmence poisterior to vesicle; left float, with simgle nidge (7) (Fig, 35) directed perpendiculat to body, commences posterior to mid-oesophagus; right fioat with two dorsed (5,6) and one ventral (4) ridge: ridge 6 commences postenior to vesicle, followed by 5 then 4 in mid-oesophageal mgion.

Male (measurements of 10 sprecimens). Total length 1.98-2.66 (2.30): maxitrum widh (without floats) $0.050-0.070$ (0057): cephalic vesicle 0.055-0065 (00064) Wng: desoplagus $0.27-0.30$ (0.28) lung, nerve ring circa 0.15 from anterior extremity; excretary pore $0.21-0.29$ (0.25) from anterior extremity; deitid $0.22-0.30$ (0.26) from anterior extremity. spicules $0.23-0.32(0.27)$ long gubernaculurn $0.025-0.045$ (0.037) long. Symlophe: ventral ridges and right float terminate near anterior eatremity of spicules, lefi flocat continues to level of guberniculumt. Bursa symmetrical, lobes indistinct. dorsal lobe not soparated from lateral lobes; rays 2 to 6 of barsa grouped in patteru of 3-2 (sensu Dursue-Desser 1983) or 1-2-2 allowing for highly diverpent ray 2 ; ray 2 slender, short. divergem, not reaching marg la of bursa; rays 3 to 5 more robust, directed postero-laterally, of approximately equivalent size, not quite reaching margin of bursa; ray 6 shartes common ordgin with ray 5 , robust, bluot, directed posteriorly, reaches margin of bursa; dorsal trunk separate from lateral trunk, ray 8 arises from dorsal trunk, slender, does not reach margin of bursa; rays 9 slighuly asymmenteal, shon, slender, arise close to origin of tay 10 ; ray 10 stout, divides Dear extremity into 4 branches; outer pair of branches mare rubust; final branches do not reach margin of bursa. Spicules simple, elongates alate; anterior extremities ifregularly knobbed, distal ups jomed; each spicule with fine, spiniform ventro-lateral branch arising in distal $1 / 6-1 / 7$ of spicule: spicule tips surrounded by expanded selentised flange in dorsoventral view; each main branch of spicule terminates in two fine spiniform projections within flange: gubernaculum elongate, rectangular in dorso-ventral view, composed of two layers; genital cone heavily selerotised, complex, ronical in shape, e. 0020 long, base 0.020 wide, papilla 0 at tip of ventral lip of genital cone: paired papillae 7 on dorsal tip of cone.

Fewale: (measurements of 10 specimens). Total lengh 2.48-2.95 (2.70); maximum width (without floats)
$0.060-0070$ (0.066), with floats citca 010 ; sephafic vesicle $0060-0.070$ (0063) long, oesophagus $0.26-0.32$ (0.29) bag: Rerve ring ciria 0,18 from anteriot extremily; excretory pore 0.21-0.27 (0.23) from anterior extremity; deind $0.22-0.26$ (0.24) from ameriot extrenity; tall $008-0.15$ (0.10) long; vulva to posterior extremity $0.14-0.21(0.17)$; egs 0065-0080 (0.074) by $0.035-0045$ (0038). Synlophe: ventral ridges extend to vulva, floats disappear in region of uterus, approx, 0.44 from tail Tail extremely long, conical; vulva intmediakely anterior to uterus, opening to exterior ar slight prominence; female genital system monodelphic though with postenor uterus patent and ovary persisting in vestipial form: vagina, vestibule and sphincter circa 0.06 long: infundibulum short, circa 004 long, prodelphic, leads to elongate uterus containing $1-4$ egas; eggs thin-shelled, ellipssidal.

Fourth stage larvi: Small nematodes, spirally coiled in 3-4 cuils, ventral surface inmernost; cephatic vesicle absent; mouth opening surrounded by four submedian papillite and two amphids; lips absent. Hucral capsule sub-cylindrical, heavily sclerotised. teeth absent. Desophagus elongate, clavate; nerve ring in midbsophageal region; excretory pore in region of oesophago-intestinal junction. Synlophe: body floats absent; five tidges; three ventral ridges (1-3), ariented from right to left, diminishing in size from Jeft to right: ventral ridge (4) on right hand side, oriented from sight to left: single dorsal ridge (5) on right hand side. onented dorsal from right to leff; orientation of syalophe oblique from right ventral to left dorsal at about 60° to sagiral axis. Tail elongare, conical.

Male (measurements of five specimens). Total ength 1.09-1,76 (1.44), maximum widh 0033-0.046 (0.040); oesophagus $0.21-0.28(0.26)$, tail $0.049-0.085(0066)$.

Female (measurements of five specimens). Total leagth $1,47-200(1.80)$, maximum widh $0.030-0.052(0.044)$, vesophagus $0.25-0.29$ (0.27), tail 0.052-0.143 (0.082), Specimens with developed genitalia show distinct posierior uterus, recurving into short owsy' (Fig. 32),

Thind stage tarvas Parasitic: Two parasitic third stage larvae wete recorded, but detailed morphological comparisons were possible from one only. Small nematode, 0.76 long, spirally coiled in three coils; buccal chpsule cylindrical, wery lightly sclerotised; oesophagus slender, clavate, 0.18 long: excretory pore in posterior pesophageal region, 0.12 from anterior extremity; tail elongate, conical, with dorssal and ventral projection. Synlophe composed of two pauts of alse beginning on lateral aspects of body, perpendicular to body surface: towards mid-region of body, alae gratually shith in position to dorsal and ventralt; in mid hoxdy region, the keft ventral pair are larger with one in almost a mid-ventral position, and second ridge to

Figs 24-32. Paraustrostrongylus ratti Obendorf: larval stages. 24-27 third larval stage cultured in vitro; 24, entire larva, lateral view; 25, cephalic extremity, lateral view; 26, tail, lateral view; 27, transverse section in mid body region; 28, transverse section of parasitic third-stage larva from small intestine; 29-32, fourth-stage larva; 29, anterior end, lateral view; 30, buccal capsule, lateral view; 31, transverse section of larva in mid-body region, arrow indicates orientation of synlophe; 32, tail of female fourth stage larva with posterior branch of genital system. Scale lines: fig. 24, 0.1 mm ; figs 25-32, 0.01 mm ; figs $25-26$ to same scale. Legend; p, phasmid; u, posterior uterus and 0 , ovary; ridges are numbered in an anticlockwise direction from the lefi-ventral ridge.
poo side of it: two dorsal alac smaller. one almost doisal in position, other to ont stide of it.

Ener-fiong: (measurcments of five specimens). Slender, ebongate larvac, 0.50-0.55 (0.53) kong. maximann widih 0,016-0.021 (0,018); buccal capsule cylindrical, e. 0.005 long, 0.002 wide, continuous with seletoused internal lining of atterior besophagus; oesophagus slender, $0,14-0,16(0,15)$ long: nerve ring $0078-0.083$ (0.082) from antenor end; excretory pore 0086 0.099 (0.096) from anterior end; intestinal cells filled with granules, number of cells noc ascentined, genibl frimogolium awoid, 0.0080 .013 (0.010) by $00055-0008(0007), 0.28-0.33(0.31)$ from anterior extremity, tail elongate, conucal, $0.065-0.089$ (0.075) kong, with dorial and veritral spike close to tip; larva with four longitudinal alac, two on cach side of body. in laveral position, almose perperndicular to hody wall.

Alfachument to the intrusinal ntursora

Aduls nematodes are coiled ventrally around muestinal villi (Figs 33, 37) usually with the tail rear the disalal fip of the villus; when fixed. the coils of the body are maintanted (Fig. 34). At the site of attachntent, nematodes compress the villi (Figs 37, 38) and, although they generally retract from the site of athachment when fixed, the impressions of the ventral ridges remain in the intestinal epithelium (Fig. 38). Changes in the epithelium at the site of attachment include cuboidal to squamous cpithelial cells. elongation (- tatteming) of nucle associated with the change io a squamous cell type, loss of cytoplasmic differentiation and the loss of the brush boider of mistovill. Aldhough sometimely squarnous, no defeets were detected in the epithelium, No marked iaflanmatory changen were detected but there were significane numbers of menonuclear cells, macrophages and lymphocyes, present in the lamina propria wgether with a small number of oxsinophits

Discission

Morpholegy of the adult

The description of the adule provided here sapplemens the origital description by Obendori (9979), which was found to be accurate in all essentials. Obendorf (1979) lowever, did not provide an apical view of the anterior extremity and provided only a single, unoricated drawing of the synlophe of the adult. In the present examination, the synlophte is described it detail, including the origins and terminations of the body ridges. Durette-Desset (979) and Beveridge \& Durete-Desset (1986) have shown fhat the number of bonly ridges changes in the posterior region of the body In several species of Anstrostrongylus: and Paraustrostrougylus, but comparable data were lacking for P. ratti, This study demonstrated that in P. fatti, the prineteqal rulges arive in the oesopliageal region and
persist to the level of the spicules in the male and to the level of the vulva in the fermale. In the male, the befl, but mol the right float extends almost to the level of the bursa, as it does also in P, rrichosuri and in A. seffertalas, the latter being in spocies which possesses: only one float P rutti also resembles A. sufestatus in having three rather than the four ventral longitudinal ridges present in most other members ol ifiese genera,

The three principal ventral ridges arise close to the ecphatic vesicle, while the ridges on the floats arise sonuewhat more posteriorly, with the ridge on the lefi float arising -mid-way between the vesiele and the excretory pore and the two dorsal ridges on the rithe ilsat arise in the anterior desophagenl region. The ventral ridge arises midway between the cephalic vesicle and the excretory pore. The ongins and termintations of ridges thave been reponed in few confamilial species, buc have been showe ur be of considerable taxonomic use at the species level in genera such as Nemarodirus (see Lichtenfets \& Pilitu 1983). Preliminary observalions ty Beveridge \& Durette-Desset (1986) on species of Anshorsiromgy/us. suggest that this may be the case in the Herpeosurmigy. finae, but features have been described in too few specics to allow any firm conclusions to be drawn.

An inseresting feature of the morphology of P. ratiri, nosed thy Otendorf (1979) was the presence of is vestigial posteriot branch to the femate genual system His ulservations were confirmet in this study, and the same structure was also seen in the fourth larval stage. The genera Austrosirongy/us and Farausitrostrongytux: are considered to be very closely related but can be separated on the basis of the presence of a selerotised genital cone in Paraustrostrongylus, the absence of ventral teeth in Puraustrostrongylus and the position of ray 2 (Beveridge \& Durette-Desset 1986) Species of Paraustrositrongllus are invariably monodetphic white most species of Austrostrongyiur are didelphic, The evelution of monodelphy has occurred repeatedly in the Trichostrongyloidea (see Durette-Dessel 1985) and the vestigial posterior uterus in $P_{\text {? }}$ natri provides an obvious connection between the morodelphic and didelphic liorms seen in these two dosely related genera. In other trichostrongyloid genera such as Neoheligmonella, the posterior uterine branch may persist in the adult nematode, but does so only as a stmall collection of cells, posterior to the vulva (DureticDesset \& Cassone 1987), rather tham the almosi futly firmed bul diminutive posterior branch soen in P nuth:

Arachment to vill

Results presented bere indicate that $@$ ratti altaches to intestinal villi by coiling spirally aroond them, as in certain other trichosirongyloid nematiodes (DuretieDesset 1985). The ventral benly ridges clearly press ime the intestimal epitfelium, and may therefive assist
the nematode in maintaining its attachment to the villus. The ventral surfaces of both body floats are also in close apposition to the epithelium and effectively increase the surface area of the nematode in contact with the intestinal epithelium. The ventral ridge of the right float (4) and to some extent the latero-dorsal ridge (4) of the right float (5) also cause indentation of the epithelium, and may therefore also assist in attachment.

Once in place on a villus, dorsal ridges would seem to have little function in attachment, and one of the features of P. ratii is that it has few dorsal ridges. However, when observed in warm isotonic solutions, the nematode is capable of uncoiling completely, and evidence from the localisation of experimentally transplanted nematodes indicates that they are capable of migration within the intestine as is the case with

Figs 33-38. Paraustrostrongylus ratti Obendorf. 33-36, scarining electron micrographs. 33, entire nematode coiled spirally around villus in small intestine; 34, entire nematode, , showing body coils (4); anterior end to left; 35, dorsal surface of nematode showing ridges 5 and 6 of dorsal aspect of right body float and ridge 7 on lateral aspect of left float; 36, ventral surface of posterior region of body showing ridge 7 on left body float and ventral ridges 1 and $2 ; 37$, longitudinal section through villus showing posterior part of nematode coiled around villus, with anterior end extending to left of field; 38, histological section through villus at point of attachment of P. ratti, with nematode retracted, leaving sites of indentation (arrows) of ridges in epithelium. Scale bars: figs 33, 34, 37, 0.1 mm ; figs 35, 36, 380.01 mm .
ather trichostrongybids (see Crofl \& Ma 1977). The dorsal ridges may therefore be of use daring nematode ougrations within the sprall intestine, when they afe uncoilod and are moving between yilli.

Morphology of Larval stages

The morphology of the buecal capsule of the fourth stage of P ratti resembles very clocely thet of the fourth stage of B. pearsoni (50e Humphery-Smith 1980) in peramelid marsupials and Glabocephaloides trifidospicalaris: (see Beveridge (979), a species parasitic in macropodid marsupials. The Glabocephabuidinas, to which the latter gemus belongs, was placed within the Herpetostrongylidae by Durette-Desset (1983) based on Features of the bursa and buccal capsule. Since members of the sub-family lack a syndopbe, their precise affinities have not been established, However, the similarities between the fourth stage larvae of G. trifidospicularis. ip pearsomi and P rarti provide additional evidence that the two subfamilies ane related.

Only two parasitic thind larval stages of P. ratri were found. However, they were identified by the characteristics of the tail, which was identical to that of tarvae cultured from faeces. Both parasitic larvae Were spirally coiled, as are the fourth stage and adult. The paiss of alae which were clearly lateral in position at the anterior and posterios extremities of the body were slightly shifted in position in the mid-body region 30 that the larger, lefe pair wete alenost ventral in position, while the smaller, right pair became almost dersal in position. This gradual shift in ridge position and the hypertrophy anid ventral shift of one pair of alae presurnably aids in attachunent, as is the case in the adult. Two pairs of lateral alae were evident in the free-living thind larval slage but they remained in the lateral position thronghout the length of the nematode boty. Several other tichostrongyloids have paired lateral alse tit the third stage larva (Eckent \& Scbwarz 1965; Durette-Desset \& Cassone 1987). The apparent change in orientation of the ridges in the midi-body region doring the initial parasitic phase of the life cycle appears to assist the nematode in attacting to villi, but the rechanisun by wbich this might oocur is unclear. Usually there is no change in the symlophe unless a monale occurs, but in this instance, the change in position of the alae is vistble in the entire nematode as well as in sections. Additional observations are clearly weeded to confirm the results reported here.

Evodaticnary relationships

The description of the fourth larval stage of P, rats peovides additional usight inso the evolution of the Herpertustmaglidiac. The type of information which can be provided by the lorval synlophe has bean discussed by Duretie-Desset (COB5), Gencrally, the
larval symophe demonstrates primitive features compared with that of the corresponding adalt and frequently resembles the adduls of other, related genert thereby allowing phylogenetic reconstructions. In the casc of P. ralti, as in other trichostrongyloids, the larval synlephe differs markedly from that of the adulh. The larva lacks floats; in the larva, the axis of orientation is oblique nather than being frontal, as oecurs in the adult and the syalophe has two fewer ridges, lacking those found on the left float and on the dorsal right float of the adult: The larval synlophe of E nari most closely resembles that found in the adults of Sutarastrongyius and Dessetostrongylus but differs from that of Sutarostrongylus in having one rather than two dorsal tidges, and mn orientation since the synlaphe of Satarastrongylus has a frontal orientation, similar to that of the adute P ratti. The oblique otientation of the syonlophe of the larval stage of P rant resembles that of Desselastiongylus, from which in differs ondy in having fewer dorsal ridges. The homology of ridges between adult and larva here considered to be most likely is that ridges I to 3 of the larva carrespond with ridges 1 to 3 of the adult. while the two additional riages of the larva (4 and 5) correspond to two of the ridges on the right float of the adult (4 and 5). An atternative possibility would be that the first four ridges from left to right correspond to the four ventral ridges present in thost species of Austrastrongylus and some species of Paraustrostrongylus, with the fifth ridge corresponding to one of the ridges on the right fluat. This internretation involves postulating the loss of a ventral ridge in adult P. ratri and the appearance of two rather than one new ridge for the right figat. The more parsimotious of the two hypotheses has been chosen hese, It is also consistent with the hypothesis of Humphery-Smith (1983) that species of Woolleya with three left-ventral, oblliquely oriented ridges, were the Tikely ancestors of Dessetostrongylus.

The suggested intermentate forms in the proposed transition series for the evolutionary lineaga hetween Wholleya and Austrostrongylus/Paraustrostrongylas Inne been Beveridgiella (see Durette-Desset 1982; Humphery-Smith 1983) and Desselnstrongylus (see Beveridge \& Durette-Desset 1986). Parricialita, an additional possibility, has a frontally syometrical synuophe, while both Reverddiella and Dessetostrongylus have an oblique orientation to the synlo phe. Patricialina was considered to have been derived from Beveridgielln ty Humphery-Smith (1983) and Cassone et at (1986). Beveridgiella has a greater number of dorsal ridges than Dessetastrongyus, and increases in the rumber of ridges ovcur in a number of evolutionary Fineages within the Trichastrongyloidea (DuretteDesset 1985), suggesting that the synlophe in species of Reveridglella is probably derived from a Desserontrongylus-like ancestor. This in fact is shown in the larval stage of B pearsoni (see Huriphery-Smith
1980), which has a synlophe close to that of Dessetostrongylus. The synlophe of the fourth-stage larva of P. ratit differs from that of adult Dessetostrongylus moorhousei only in lacking an extra dorsal ridge. Because of the close correspondence between their synlophes, it appears likely that Parakstrostrongylus evolved from an ancestor resembling contemporary species of Dessetostrongyius, thus supporting the hypothesis proposed by Beveridge \& Durette-Desset (1986) and Cassone et al. (1986),

Acknowledgments

Rats were obtained under permits from the Vietorian Department of Conservation and the Environment (90-053 and 91-095). We wish to thank Christine Andersen for expert technical assistance, Lilliana Tatarczuch for the preparation of the thin sections and Dr D. M. Spratt for comments on the manuscript. This work was supported financially by the Australian Research CounciI.

References

Bryeridge, I. (1979) A review of the Globocephaloidinat Inglis (Nematoda: Amidostomatidae) from macropodid marsupials. Aust'J. Zool 27, 151-175,
(1986) Coevolutionary relationships of the helminth parasites of Australian marsupials. pp 93-117. In "Coevolution and Systematics" A. R. Stone \& D L Hawkworth (Eds). The Systematics Association. (Clarendon Press, Oxford)
\& Durette-Desset, M.-C. (1986) New species of Austrostrongylus Chandler, 1924 (Nematoda, Trichostrongyloidea), from Australian marsupials, with a redescription of A. minutus Iohnston \& Mawson, 1938, and description of a new genus Sutarastrongylus. Bull. Mur. natn- Hist. nat., Paris tème sér. 8, 145-170.
Cassone, J., Durette-Desset, M,-C. \& Presidente, P J. A. (1986) Nouvelle hypothese sur lévolution des Herpetostrongylinac (Nematoda, Trichostrongyloidea) parasites de Marsupiaux ausuraliens. Ibid, 267-283.
Crole, N. A. \& MA, K. (1977) The location of parasites within their hosts: the influence of surgical manipulation of the intestine and blood supply on the dispersion of Nippostrongyius brasiliensis in the rat Int. J. Parasital. 7. 21-26.

Durette-Desset, M.C. (1971) Essai de elassification des Nématodes Heligmosomes. Correlations avec la paléobiogéographie des hótes. Mém. Mus. nain. Hisi. nal., Paris, sér A, Zoologie 69, 1-126.
(1979) Compléments morphologiques à Yétude des gentes Austrostrongylus Chandler, 1924, et Paraustrostrongylus Mawson. 1973 Nematods, Trichostrongylidae). Bull. Mus. nutn. Hist. nut., Rarix, 4ime sér 1, 1023-1030.
(1982) Relations hátes-parasites chez les

Trichostrongyloides. Mem. Mus natn. Hist. nat., Paris sér A. Zoologie 123, 93-100.
(1983) CIH Kcys to the Nematode Parasites of Vertebrates. No. 10 In R, C. Anderson \& A. G. Chabaud (Eds). Keys to genera of the superfamily Trichostrongyloidea. Commonwealh Agricultural Bureaux, Farmham Risyal, pp 68.
(1985) Trichostrongyloid nematodes and theit vertebrate hosts: reconstruction of the phylogeny of a parasitic group. Adv. Parasiol. 24, 239-306.
\& CAssone, J. (1987) Sur deux Nematodes Trichostrongyloides parasites d'un Muridé africain. IIChronologie des cycles, description des stades larvaires et des immatures. Ann. Parasitol. Fum, Comp. 62, 133-158.
Eckert. J. \& Schwarz, R. (1965) Zur Struktur der Cuticula invasionsfhäiger Larven einiger Nematoden. Zeil. if Farasìtenk. 26, 166-142.
Humphery-Smith, I. (1980) Beveridgiella n. gen., Dessetosirongylus n. gen. (Nematoda, Trichostrongyloidea) parasites de Marsupiaux australicns. Bull. Mus. natn, Hise. nat., Paris. 4ème sér. 2, 999-1012,
(1983) At hyporhesis on the evolution of Herpetostrongylinae (Trichostrongyloidea: Nematoda) in Australian marsupials, and their relationships with Yianilidae, parasites of South American marsupials. Ause. J. Zool. 31, 931-942.

Lichtenfels, J. R. \& Pilitt, R. A. (1983) Cunculat tidge patterns of Nematodirus (Nematoda: Trichostrongyloidea) parasitic in domestic ruminants of North America, with in key to species. Proc. Helminthol. Soc, Wash. 50, 261-274.
OrFNRORF, D. L. (1979) The helminth parasites of Rathes fuscipes (Waterhouse) from Victoria, including description of two new parasite species. Aust. I Zool 27, 867-879.

[^0]: - Department of Vemerinary Science, University of Melbouroe, Parkvisle, Vic, 3052.
 + Laboratoire de biologie peresilaire, protistolngie el helminthologie Muséumn national d'Histisire naturelle, 6 l . rue Buffon, Paris, France.

